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Abstract: A rapid and efficient strategy has been developed for the general synthesis of complex peptide aldehydes. Nα-
Benzyloxycarbonylamino acids were converted to protected aldehyde building blocks for solid-phase synthesis in four steps and
moderate overall yields. The aldehydes were protected as 1,3-dioxolanes except for one case where a dimethyl acetal was used.
These protected amino aldehyde monomers were then incorporated onto 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyryl-resin
(BAL-PEG-PS) by reductive amination, following which the penultimate residue was introduced by HATU-mediated acylation.
The resultant resin-bound dipeptide unit, anchored by a backbone amide linkage (BAL), was extended further by routine Fmoc
chemistry procedures. Several model peptide aldehydes were prepared in good yields and purities. Some epimerization of the
C-terminal residue occurred (10% to 25%), due to the intrinsic stereolability conferred by the aldehyde functional group, rather
than any drawbacks to the synthesis procedure. Copyright  2005 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: peptide aldehydes; backbone amide linker (BAL); solid-phase synthesis; protease inhibitors; 1,3-dioxolanes;
dimethyl acetals

INTRODUCTION

Proteolytic enzymes, in any of four major classes (ser-
ine, cysteine, aspartyl and metallo), play key roles
in the regulation of a multitude of physiological pro-
cesses including digestion, fertilization, growth, dif-
ferentiation, cell signalling/migration, immunological
defense, wound healing and apoptosis [3–7]. Uncon-
trolled proteolysis, however, is implicated in disease
states such as AIDS, hypertension, stroke, inflamma-
tion, asthma, osteoporosis, the common cold, cancer,
muscular dystrophy, arthritis and multiple sclerosis,
among others [6]. The design of inhibitors as ther-
apeutic agents to treat such disorders is an active
area of medical research [8]. Ever since the dis-
covery that two peptide aldehydes, leupeptin and
antipain, isolated from a screening program, inhibit
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trypsin, plasmin, papain, and the cysteine proteases
cathepsin A and B [9], the medicinal properties
of peptide aldehydes have been a focus of much
research.

The reversible inhibition of proteases by peptide
aldehydes results from the formation of hemiacetal
(serine proteases) or hemithioacetal (cysteine proteases)
tetrahedral intermediates, mimicking the transition
states of the enzymes [10–16]. It has also been
suggested that peptide aldehyde inhibitors of aspartyl
proteases act as transition state analogues, the
hydrated form of the aldehyde being responsible for this
activity [17]. Examples of naturally occurring and/or
synthetic peptide aldehyde inhibitors, along with their
respective enzyme targets, are shown in Table 1.

The need for simple and efficient methodology to
access peptide aldehydes is due not only to their poten-
tial as protease inhibitors. For example, N-protected
α-amino aldehydes are important starting materials
in organic synthesis [18] and in the asymmetric syn-
thesis of heterocyclic compounds [19]. Aldehydes and
ketones are used in peptidomimetic design to form
reduced peptide bonds, �[CH2NH], in the hope of
generating compounds with increased metabolic sta-
bility [20–22]. Aldehyde functionality is also used in
preparing larger peptides through ligation strategies,
including oxime [23,24] and hydrazone ligations [25],
as well as a chemoselective ligation method that forms
pseudoproline-containing peptides [26]. Peptides can
be modified by α-oxo-aldehydes obtained by periodate
oxidation of the side-chains of serine, threonine or
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Table 1 Peptide Aldehyde Protease Inhibitors

Peptide
aldehydes and
references

Structure Protease Enzyme
class

Associated disease
state(s)/therapeutic
use(s)

Leupeptins
[54–59]

R3

R2

N
H

H
N

N
H

H
O

O R1

O

NH

NHH2N

O

R1, R2 = iPr, iBu, sBu
R3 = Me, Et

Trypsin
Plasmin

Kallikrein
Thrombin
Cathepsin B

Serine
Serine

Serine
Serine
Cysteine

Pancreatis
Tumor invasion, fertility
control
Inflammation
Thrombosis
Tumor metastasis,
inflammation, bone
resorption, myocardial
infarction

Chymostatins
[54,55,60,61]

N
H

N
H

H
N

N
H

H
O

NH

H
N

O

O

OO

HO

R = iBu, iPr, sBu
R

NH
Chymotrypsin Serine Pancreatis

Antipain
[54,55,61–64]

N
H

N
H

H
N

N
H

H
O

O

O

OO

HO

NH

NHH2N H2N

NH

NH Trypsin
Plasmin
Cathepsin B

Serine
Serine
Cysteine

Pancreatis
Fertility control
Tumor metastasis,
inflammation, bone
resorption, myocardial
infarction

Elastatinal
[54,55,65–69]

N
H

N
H

H
N

N
H

H

O

NH

NH
H
N

O

O

OO

HO

NH2O

Elastase Serine Inflammation,
emphysema, adult
respiratory distress
syndrome, rheumatoid
arthritis

Calpeptin
[70,71]

O
H
N

N
H

H

O

O

O

Calpain Cysteine Stroke, Alzheimer’s
disease, muscular
dystrophy, cataracts,
arthritis

α-MAPI
[17,55,72]

N
H

N
H

H
N

N
H

H
O

O

O

OO

HO

NH

NHH2N Human
immunodeficiency
virus (HIV)
protease

Aspartyl AIDS
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Table 1 (Continued)

Peptide
aldehydes and
references

Structure Protease Enzyme
class

Associated disease
state(s)/therapeutic
use(s)

LY338387 [73]

O
H
N

N
H

H

O CH2

O

O

SO
O Human

rhinovirus 3C
protease

Cysteine Common cold

Efegatran
(LY-294468)
[74]

N
H

H

O

NH

H2N NH

O
N

O
N
H

Thrombin Serine Thrombosis

L-709,049 [75]

N
H

H
N N

H

H

O

O

O

O

OHOH
N

O
CH2

OH

Interleukin-1β

converting
enzyme (ICE)

Cysteine Chronic and acute
inflammatory disease

CVS-1123
[76,77]

N
N
H

H

O

HO

NH

NH2HN

O
O

OO HN

Thrombin Serine Thrombosis

cysteine [27]; these react with N-terminal cysteine to
form thiazolidine-ligated peptides [28] or with amino-
oxy groups to form oxime bonds [29,30].

Various solid-phase strategies have been developed
for the synthesis of peptide aldehydes. A popular
method utilizes a Weinreb amide [31] linking strategy
[32,33]. Following linker loading and peptide assem-
bly, the product is cleaved from the support with
LiAlH4. This strategy has been used successfully to
synthesize aspartyl aldehyde peptides [34], dipeptide
aldehyde inhibitors of β-amyloid production [35], alde-
hyde and ketone libraries [36], and amino and pep-
tide aldehydes and ketones in concert with ‘unnatural
amino acid/peptide synthesis’ (UPS) methodology [37].
A phenyl ester linker, cleavable upon hydride treatment,
has also been used to prepare peptide aldehydes [33]. In

another method, Wittig chemistry was used to assemble
an olefin linker through which the peptide was bound;
following chain elongation, ozonolysis gave the peptide
aldehyde [38,39]. Hydrolysable linkers that lead to pep-
tide aldehydes include oxazolidines [40], thiazolidines
[41], dibenzosuberyl semicarbazides [42,43], semicar-
bazones [44], acetals [45] and thioacetals [46,47].
In addition, photolysable substituted anthraquinones
have been reported [48].

Contrasting with essentially all previously described
solid-phase methods, the present paper shows a way
to access peptide aldehydes wherein the management
of the aldehyde moiety is separate from the anchoring
chemistry that first links, and eventually cleaves, the
peptide from the support. Thus, the very general
backbone amide linker (BAL) strategy [49–51] is
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applied herein to appropriate building blocks in which
the eventual aldehyde is masked by standard acetal
protecting groups.

RESULTS AND DISCUSSION

Synthesis of Protected α-Amino Aldehydes

The eventual C-terminal aldehyde residues needed to
be converted into appropriately protected monomers
that could be loaded later onto the solid sup-
port. For C-terminal alaninals and phenylalani-
nals, the required 1,3-dioxolanes (5a–c) were pre-
pared according to the four-step sequence shown in
Scheme 1. Weinreb amides 2 were prepared from Nα-
benzyloxycarbonylamino acids (1), and then reduced
with LiAlH4 to give the corresponding aldehydes 3.
Next, treatment with ethylene glycol in refluxing

toluene, in the presence of a catalytic amount of p-
toluenesulfonic acid (TsOH), generated the protected
1,3-dioxolanes 4.

To optimize removal of the Z group from 4, various
hydrogenolytic conditions were examined (Table 2);
the most effective of these was catalytic transfer
hydrogenation with 1,4-cyclohexadiene [52] in the
presence of Pearlman’s catalyst (Table 2, Entry 5). The
desired amino acetals 5a–c were all prepared using
these conditions, and obtained in overall yields (based
on 1a–c) of 44%, 51% and 35% respectively.

An alternative procedure [53] was used in the case of
aspartic acid to accommodate the tert-butyl (OtBu) ester
side-chain protecting group (Scheme 2). Activation of
Z-Asp(OtBu)-OH as a mixed anhydride, followed by
hydride reduction, generated the corresponding alcohol
6. Swern oxidation gave protected aldehyde intermedi-
ate 3d, which was treated with trimethyl orthoformate

N
H

O

OH

N
H

O

H

H 2N

N
H

O

N
O

N
H

HN(Me)OMe·HCl, HBTU, HOBt

DIEA, DMF, 25 °C, 2 h

LiAlH4, THF

0 °C to 25 °C, 0.5 h

(CH2OH)2, TsOH

PhMe, reflux, 6 h

Pd(OH)2/C, 1,4-cyclohexadiene

EtOAc, 25 °C, 4 h

1a-c 2a-c

3a-c 4a-c

5a-c

a: R1 = CH3, R2 = H; b: R1 = CH2Ph, R2 = H; c: R1 = H, R2 = CH2Ph

Z Z

Z Z

R1 R2 R1

R1 R1

R1

R2

R2 R2

R2

O

O

O

O

Scheme 1 Preparation of protected amino aldehydes (5a–c).

Table 2 Optimization of Hydrogenation Conditions used for Transformation of 4a to 5a

Entry Hydrogen source Catalyst Solvent Time (h) Yield (%)

1 H2 Pd/C EtOAc 12 22
2 H2 Pd/C MeOH 5 9
3 H2 Pd(OH)2/C EtOAc 6 63
4 1,4-cyclohexadiene Pd/C EtOAc 5 37
5 1,4-cyclohexadiene Pd(OH)2/C EtOAc 2 87

See Experimental section for detailed conditions. Entry 5 is in bold because these conditions give the highest yield.
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N
H O

OH

(1) iBuO(C=O)Cl, NMM, THF, 0 °C, 15 min  

(2)  NaBH4, THF–MeOH (3:1), −78 °C, 20 min
N
H

OH

O

O

Z
Z

N
H

H

O

O

Z

(1)  (COCl)2, DMSO, CH2Cl2,
−45 °C, 30 min 

(2)   DIEA, −20 °C, 30 min

O

MeOH, cat. TsOH

CH(OMe3)3, 25 °C, 1.5 h

N
H

O

O

Z
Pd(OH)2/C, 1,4-cyclohexadiene

EtOAc, 25 °C, 4 h H2N

O

O

1d 6

3d

4d 5d
O

O

O

O

O

O

Scheme 2 Preparation of H-Asp(OtBu)-H dimethyl acetal (5d).

(TMOF)–MeOH–TsOH to generate dimethyl acetal 4d.
Removal of the Z group using the already described
optimized conditions gave compound 5d with a free
amino group in an overall yield of 24% based on starting
protected amino acid.

Solid-Phase Synthesis of Peptide Aldehydes Using
the Backbone Amide Linker (BAL) Strategy

BAL-PEG-PS resin (7) was prepared according to
previously described procedures [49]. The masked
α-amino aldehydes 5a–d were linked onto the
resin by NaBH3CN-promoted reductive aminations in
DMF–HOAc (99 : 1) (Scheme 3). Peptide synthesis pro-
ceeded with acylation of the secondary BAL-linked
amine, by using the incoming Fmoc-amino acid as acti-
vated in situ by HATU-DIEA in CH2Cl2 –DMF (9 : 1). Past
this point, chain elongation followed standard Fmoc
procedures. Treatment of completed peptidyl-resins
with trifluoroacetic acid (TFA)–H2O (19 : 1) released the
final products, with concomitant cleavage of the acetal
moieties to free the C-terminal aldehyde functionalities
(Scheme 3).

Model peptide aldehydes synthesized by the outlined
method were analysed by reversed-phase HPLC and
FABMS (Table 3). Cleavage yields were typically above
50%, and as high as 73%. Analytical HPLC (e.g.
Figure 1) showed that the initial cleaved products were
reasonably homogeneous (78% to 97%).

Racemization Studies

The Cα-proton adjacent to an aldehyde function, be
it in the starting α-amino aldehyde or in the product
C-terminal peptide aldehyde, is reported to be sus-
ceptible to epimerization under conditions of silica

Time (min)
10 20 30

A
bs

or
ba

nc
e 

(2
20

 n
m

)

Figure 1 Analytical reversed phase-HPLC profile of Fmoc-
Val-Ala-Asp-H (Table 3, Entry 5). Linear gradient of 0.1%
aqueous TFA and 0.1% TFA in CH3CN was run at 1.0 ml/min
flow rate from 9 : 1 to 0 : 10 over 35 min, then to 0 : 10 over the
next 5 min.

gel chromatography or reversed-phase HPLC [32,40].
To address the question of racemization of the α-
amino aldehyde moiety, the route to Fmoc-Glu-Val-
Val-Phe-H (Table 3, Entry 3), starting from Z-Phe-
OH, was repeated starting from Z-D-Phe-OH (1c,
Scheme 1) to provide a reference for the correspond-
ing diastereomeric Fmoc-protected peptide aldehyde
(Table 3, Entry 4). Separate HPLC analyses of the Fmoc-
protected L and D peptides showed similar retention
times, and when the compounds were co-injected, only
one main peak was observed. Starting with the same
protected peptide-resins, final Fmoc deprotection steps
were carried out, followed by TFA cleavage, to provide
the free peptides H-Glu-Val-Val-Phe-H and H-Glu-Val-
Val-D-Phe-H. These free peptides were easily resolved
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Scheme 3 Solid-phase synthesis of peptide aldehydes with BAL anchoring.
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Table 3 Peptide Aldehydes Synthesized According to
Scheme 3

Entry Peptide aldehyde HPLC
analysisa

Cleavage
yield
(%)b

1 Fmoc-Asp-Phe-Val-Ala-H 17.4 (82) 56
2 Fmoc-Ala-Phe-H 22.4 (82) 37
3 Fmoc-Glu-Val-Val-Phe-H 18.9 (78) 50
4 Fmoc-Glu-Val-Val-D-Phe-H 18.6 (92) N.D.
5 Fmoc-Val-Ala-Asp-H 16.3 (97) 73

a Retention time (min) and initial purity (%).
b Measured by amino acid analysis (N.D. = not determined)

Table 4 Enantiopurity of H-Val-Val-Phe-H as a Function of
Time Following Acidic Cleavage

Time (h) L (%) D (%)

1 90.0 10.0
3 89.8 10.2

18 85.5 14.5

by HPLC: in the peptide with C-terminal L-Phe-H, 10%
of the opposite diastereomer (D) was present, while in
the peptide with the C-terminal D-Phe-H, 26% of L was
present. After the peptide with the C-terminal L-Phe-H
was left to stand in neat TFA for 18 h, 14.5% of the
D-diastereomer was observed (Table 4).

CONCLUSIONS

In conclusion, an efficient strategy, based on BAL
anchoring, has been developed for preparing C-terminal
peptide aldehydes. Amino acid-derived acetals were
synthesized in solution, and loaded onto the support
by reductive amination. Acylation of the resulting sec-
ondary amines, followed by standard peptide synthesis
protocols, was used to assemble protected resin-bound
peptides. Treatment with TFA–H2O (19 : 1) released the
peptides from the supports, with concomitant cleavage
of protecting groups, to give the free peptide alde-
hyde products. Racemization of aldehyde products was
observed by HPLC when the peptides were fully depro-
tected, and proceeded slowly under the acidic cleavage
conditions. The method reported here differs from liter-
ature procedures to prepare C-terminal peptide aldehy-
des because special linkers or non-standard cleavage
conditions do not need to be applied. Therefore, this
method is potentially of considerable generality and
should be applicable to aldehydes more complex than
those presented here.

EXPERIMENTAL SECTION

General

Materials, solvents, instrumentation and general methods
were essentially as described in previous publications from
our laboratory [49,50]. Organic transformations and washes
were at 25 °C, unless indicated otherwise. Polymer-supported
reactions were carried out using plastic syringes (3, 5 and
10 ml) fitted with polypropylene frits. PEG-PS · HCl resin
and 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyric acid (o,p-
PALdehyde) were obtained from PE Biosystems (Framingham,
MA). All solvents were reagent grade from Sigma-Aldrich
Chemicals (Milwaukee, WI). CH2Cl2 was freshly distilled from
anhydrous calcium hydride.

1H NMR spectra were obtained at ambient temperature on
Varian VI 300 or Varian VI 200 spectrophotometers. Fast atom
bombardment mass spectroscopy (FABMS) was performed on
a VG7070E-HF mass spectrometer and chemical ionization
mass spectroscopy (CIMS) was performed on a Perkin Elmer
Sciex API III triple quadrupole mass spectrometer equipped
with ionspray interface. Analytical HPLC was performed using
a Vydac C18 reversed-phase column (0.46 × 25 cm) on a
Beckman instrument, configured with two 112 pumps and a
165 variable wavelength detector set at 220 nm and 280 nm.
Linear gradients of 0.1% aqueous TFA and 0.1% TFA in CH3CN
were run at 1.0 ml/min flow rate from: 9 : 1 to 0 : 10 over
35 min, then to 0 : 10 over the next 5 min.

Amino-protected Weinreb amides

(S)-[1-(Methoxymethylcarbamoyl)ethyl]carbamic acid be-
nzyl ester [Z-Ala-N(Me)OMe] (2a). Nα-Benzyloxycarbonyl-L-
alanine (2.82 g, 12.6 mmol) was dissolved in DMF (40 ml),
and then HBTU (5.27 g, 13.9 mmol), HOBt · H2O (2.13 g,
13.9 mmol), DIEA (5.73 g, 32.9 mmol) and N,O-dimethyl-
hydroxylamine hydrochloride (3.08 g, 31.6 mmol) were added
sequentially to the solution. After 2 h at 25 °C, the reaction
mixture was diluted with EtOAc (400 ml), and was washed
with 5% aqueous NaHCO3 (3 × 100 ml), 10% aqueous citric
acid (3 × 100 ml), and brine (3 × 100 ml), dried (MgSO4), and
concentrated in vacuo providing the title compound as a white
solid (2.99 g, 89%); Rf 0.70 (CHCl3 –MeOH, 9 : 1); 1H NMR
(CDCl3, 200 MHz) δ 7.27–7.37 (m, 5H), 5.54 (d, J = 7.8 Hz,
1H), 5.08 (s, 2H), 4.73 (m, 1H), 3.77 (s, 3H), 3.21 (s, 3H),
1.34 (d, J = 6.8 Hz, 3H); FABMS calcd for C13H18N2O4 266.3,
found 267.2 [M + H]+.

(S)-[1-(Methoxymethylcarbamoyl)phenylethyl]carbamic
acid benzyl ester [Z-Phe-N(Me)OMe] (2b). Prepared as
described for 2a, but starting with Nα-benzyloxycarbonyl-
L-phenylalanine (2.74 g, 9.2 mmol), providing the title com-
pound as a colorless oil (2.82 g, 90%); Rf 0.57 (hex-
anes–EtOAc, 1 : 1); 1H NMR (CDCl3, 200 MHz) δ 7.13–7.32
(m, 10H), 5.42 (d, J = 8.4 Hz, 1H), 4.98–5.13 (m, 3H), 3.68
(s, 3H), 3.17 (s, 3H), 2.86–3.13 (m, 2H); FABMS calcd for
C19H22N2O4 342.4, found 343.2 [M + H]+.

(R)-[1-(Methoxymethylcarbamoyl)phenylethyl]carbamic
acid benzyl ester [Z-D-Phe-N(Me)OMe] (2c). Prepared as
described for 2b, but starting with Nα-benzyloxycarbonyl-
D-phenylalanine (1.53 g, 5.1 mmol), providing the title com-
pound as a colorless oil (1.59 g, 91%); 1H NMR same as 2b.
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Reduction of amino-protected Weinreb amides to
generate the corresponding aldehydes

(S)-(1-formyl-2-ethyl)carbamic acid benzyl ester [Z-Ala-H]
(3a). LiAlH4 (1 M in THF; 10 ml) was added dropwise at 0 °C
to a solution of 2a (0.89 g, 3.4 mmol) in THF (25 ml) under
N2. The ice bath was then removed, and the reaction was
allowed to proceed for 30 min at 25 °C. Next, the reaction
mixture was diluted with Et2O (100 ml) and quenched with
0.5 N aqueous HCl (20 ml). The aqueous phase was extracted
with Et2O (3 × 20 ml), and the combined organic layers were
washed with 1.0 N aqueous HCl (3 × 20 ml), 5% aqueous
NaHCO3(3 × 20 ml), brine (3 × 20 ml), dried (Na2SO4) and
concentrated in vacuo to provide the title compound as a
colorless oil (0.57 g, 83%); Rf 0.45 (CHCl3 –MeOH, 9 : 1);
1H NMR (CDCl3, 200 MHz) δ 9.57 (s, 1H), 7.36 (s, 5H), 5.38 (s,
1H), 5.12 (s, 2H), 4.26–4.36 (m, 1H), 1.38 (d, J = 7.2 Hz, 3H).

(S)-(1-formyl-2-phenylethyl)carbamic acid benzyl ester [Z-
Phe-H] (3b). Prepared as described for 3a, but starting from
2b (1.45 g, 4.2 mmol), providing the title compound as a waxy
solid (1.02 g, 85%); Rf 0.52 (hexanes–EtOAc, 1 : 1); 1H NMR
(CDCl3, 200 MHz) δ 9.62 (s, 1H), 7.01–7.36 (m, 10H), 5.41
(d, J = 6.4 Hz, 1H), 5.12 (s, 2H), 4.37–4.60 (m, 1H), 3.13 (d,
J = 6.6 Hz, 2H); FABMS calcd for C17H17N1O3 283.3, found
284.1 [M + H]+.

(R)-(1-formyl-2-phenylethyl)carbamic acid benzyl ester [Z-
D-Phe-H] (3c). Prepared as described for 3b, but starting
from 2c (1.66 g, 4.9 mmol), providing the title compound as a
colorless oil (1.28 g, 93%); 1H NMR same as 3b.

3-Benzyloxycarbonylamino-4-oxobutyric acid tert-butyl
ester [Z-Asp(OtBu)-H] (3d). Oxalyl chloride (3.3 ml, 6.5 mmol)
was added dropwise, at −45 °C, to a solution of DMSO
(0.85 ml, 12.0 mmol) in CH2Cl2 (15 ml) under N2. After 5 min,
Z-Asp(OtBu)-ol (6) (1.91 g, 5.4 mmol) in CH2Cl2 (9 ml) was
added dropwise, and the mixture was stirred for 30 min at
−45 °C. DIEA (2.9 ml, 16.9 mmol) was added, and the reac-
tion was allowed to warm to −20 °C following which it was
stirred for 30 min. The reaction solution was diluted with
CH2Cl2 (60 ml), then washed with H2O (20 ml), 5% aque-
ous NaHCO3 (20 ml), H2O (3 × 20 ml), and dried (Na2SO4),
and concentrated in vacuo to provide the title compound as
a yellow oil (1.32 g, 75%); Rf 0.63 (CH2Cl2 –MeOH, 20 : 1);
1H NMR (CDCl3, 200 MHz) δ 9.64 (s, 1H), 7.36 (s, 5H), 5.90 (d,
J = 8 Hz, 1H), 5.13 (s, 2H), 4.38 (ddd, J1 = 8.4 Hz, J2 = 4.8 Hz,
J3 = 4.6 Hz, 1H), 2.95 (dd, J1 = 17 Hz, J2 = 4.6 Hz, 1H), 2.75
(dd, J1 = 17 Hz, J2 = 4.8 Hz, 1H), 1.41 (s, 9H).

Ketal formation from amino protected α-amino
aldehydes to generate the corresponding
1,3-dioxolanes

(S)-(1-[1,3]Dioxolan-2-yl-ethyl)carbamic acid benzyl ester
[Z-Ala-H ethylene acetal] (4a). A solution of the protected
α-amino aldehyde 3a (1.17 g, 5.7 mmol) with ethylene glycol
(3.2 ml, 57 mmol) and TsOH (0.14 g, 0.7 mmol) in toluene
(90 ml) was refluxed for 6 h using a Dean-Stark trap to remove
H2O formed during the reaction. Following concentration in
vacuo, the crude product mixture was taken up in EtOAc
(60 ml), washed with H2O (3 × 20 ml) and brine (3 × 20 ml)
and then dried (Na2SO4) and concentrated in vacuo. The
residue was then purified by silica gel chromatography

(hexanes–EtOAc, 1 : 1), providing the title compound as a
colorless oil (1.43 g, 68%); Rf 0.41 (hexanes–EtOAc, 1 : 1);
1H NMR (CDCl3, 200 MHz) δ 7.34–7.38 (m, 5H), 5.11 (s, 2H);
4.90 (d, J = 7.2 Hz, 1H), 4.84 (d, J = 2.2 Hz, 1H), 3.88–3.98
(m, 5H), 1.16 (d, J = 6.8 Hz, 3H); FABMS calcd for C13H17N1O4

251.3, found 252.1 [M + H]+.

(S)-(1-[1,3]Dioxolan-2-yl-2-phenylethyl)carbamic acid be-
nzyl ester [Z-Phe-H ethylene acetal] (4b). Prepared as
described for 4a, but starting from 3b (1.03 g, 3.6 mmol),
providing the title compound as a white solid (0.83 g, 70%);
Rf 0.75 (hexanes–EtOAc, 1 : 1); 1H NMR (CDCl3, 200 MHz)
δ 7.20–7.36 (m, 10H), 5.04 (s, 2H), 4.92 (s, 1H), 4.85 (d,
J = 2.0 Hz, 1H), 3.87–4.00 (m, 5H), 2.86 (t, 2H); FABMS calcd
for C19H21N1O4 327.4, found 328.2 [M + H]+.

(R)-(1-[1,3]Dioxolan-2-yl-2-phenylethyl)carbamic acid
benzyl ester [Z-D-Phe-H ethylene acetal] (4c). Prepared as
described for 4b, but starting from 3c (1.47 g, 4.5 mmol), pro-
viding the title compound as a white solid (0.72 g, 49%); Rf

0.74 (hexanes–EtOAc, 1 : 1); 1H NMR same as 4b.

(S)-3-Benzyloxycarbonylamino-4,4-dimethoxybutyric acid
tert-butyl ester [Z-Asp(OtBu)-H dimethyl acetal] (4d). A
solution of Z-Asp(OtBu)-H (3d) (1.32 g, 4.1 mmol) plus
TsOH (20 mg, 0.1 mmol), in MeOH (6 ml) plus CH(OMe)3
(2.2 ml, 20.3 mmol), was stirred at 25 °C for 1.5 h, and
then concentrated. The residue was then diluted with
CH2Cl2 (60 ml), washed with 5% aqueous NaHCO3 (2 ×
20 ml) and H2O (2 × 20 ml), and then dried (Na2SO4) and
concentrated in vacuo. The residue was then purified by
silica gel chromatography (hexanes–EtOAc, 4 : 1), providing
the title compound as a yellow oil (0.66 g, 44%); Rf 0.71
(hexanes–EtOAc, 1 : 1); 1H NMR (CDCl3, 300 MHz) δ 7.33–7.37
(m, 5H), 5.14 (d, J = 12.3 Hz, 1H), 5.08 (d, J = 12.3 Hz, 1H),
4.35 (d, J1 = 3.9 Hz, 1H), 4.16–4.25 (m, 1H), 3.42 (s, 6H),
2.54 (dd, J1 = 5.7 Hz, J2 = 15.7 Hz, 1H), 2.45 (dd, J1 = 6.5 Hz,
J2 = 15.7 Hz, 1H), 1.43 (s, 9H); FABMS calcd for C18H27NO6

353.4, found 354.2 [M + H]+.

Hydrogenation of amino-protected 1,3-dioxolane
derivatives to selectively generate free α-amino
groups

(S)-1-[1,3]Dioxolan-2-yl-ethylamine [H-Ala-H ethylene
acetal] (5a). Palladium hydroxide [20 wt. % on carbon; Pearl-
man’s catalyst] (0.22 g) was added to a N2-purged solution
of 4a (0.22 g, 0.9 mmol) in EtOAc (3 ml). 1,4-Cyclohexadiene
(0.84 ml, 8.9 mmol) was then added, and the reaction was
allowed to proceed for 4 h at 25 °C. Next, the reaction mixture
was filtered through Celite, and concentrated in vacuo to pro-
vide the title compound as a yellow oil (90 mg, 87% overall); Rf

0.19 (EtOAc); 1H NMR (CDCl3, 200 MHz) δ 4.61 (d, J = 3.8 Hz,
1H), 3.87–3.96 (m, 4H), 2.85–2.97 (m, 1H), 1.53 (s, 2H), 1.08
(d, J = 6.6 Hz, 3H); CIMS calcd for C5H11N1O2 117.2, found
118.1 [M + H]+.

(S)-1-[1,3]Dioxolan-2-yl-2-phenylethylamine [H-Phe-H eth-
ylene acetal] (5b). Prepared as described for 5a but starting
from 4b (0.66 g, 2.0 mmol), providing the title compound as a
yellow oil (0.37 g, 95%); Rf 0.48 (CHCl3 –MeOH, 9 : 1); 1H NMR
(CDCl3, 200 MHz) δ 7.21–7.38 (m, 5H), 4.75 (d, J = 3.6 Hz,
1H), 3.91–4.05 (m, 4H), 3.12 (quintet, J = 4.4 Hz, 1H), 2.95
(dd, J1 = 13.5 Hz, J2 = 4.8 Hz, 1H), 2.62 (dd, J1 = 9.2 Hz,
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J2 = 4.5 Hz, 1H), 1.34 (s, 2H); CIMS calcd for C11H15N1O2

193.2, found 194.1 [M + H]+.

(R)-1-[1,3]Dioxolan-2-yl-2-phenylethylamine [H-D-Phe-H
ethylene acetal] (5c). Prepared as described for 5b but start-
ing from 4c (0.31 g, 1.1 mmol), providing the title compound
as a yellow oil (0.18 g, 85%); 1H NMR same as 5b.

(S)-3-Amino-4,4-dimethoxybutyric acid tert-butyl ester [H-
Asp(OtBu)-H dimethylacetal] (5d). Palladium hydroxide [20
wt. % on carbon; Pearlman’s catalyst] (0.33 g) was added to a
N2-purged solution of Z-protected dimethyl ketal 4d (0.33 g,
0.9 mmol) in EtOAc (2.5 ml), following which the suspension
was diluted with further EtOAc (2.5 ml) and then 1,4-
cyclohexadiene (0.84 ml, 8.9 mmol) was added. The reaction
was allowed to proceed for 24 h at 25 °C, following which
the mixture was filtered through Celite and concentrated,
providing the title compound as a yellow oil (0.16 g, 77%);
Rf 0.49 (CHCl3 –MeOH, 9 : 1); 1H NMR (CDCl3, 300 MHz) δ

4.12 (d, J = 5.7 Hz, 1H), 3.42 (s, 3H), 3.40 (s, 3H), 3.23–3.29
(m, 1H), 2.52 (dd, J1 = 16.2 Hz, J2 = 3.9 Hz, 1H), 2.22 (dd,
J1 = 8.7 Hz, J2 = 15.9 Hz, 1H), 1.44 (s, 9H); CIMS calcd for
C10H21N1O4 219.3, found 220.1 [M + H]+.

(S)-3-Benzyloxycarbonylamino-4-hydroxybutyric acid tert-
butyl ester (6). N-Methylmorpholine (0.71 ml, 6.5 mmol) and
isobutyl chloroformate (0.80 ml, 6.2 mmol) were added, at
0 °C, to a solution of Z-Asp(OtBu)-OH (2.00 g, 5.86 mmol)
in THF (35 ml). Activation continued for 15 min, following
which the solution was added dropwise to a suspension of
NaBH4 (0.44 g, 11.7 mmol) in THF–MeOH (3 : 1, 50 ml) at
−78 °C. Stirring continued for 20 min at −78 °C and then
the reaction was quenched with HOAc–H2O (1 : 9; 25 ml).
The solvent was partially concentrated, and the residue
was extracted with EtOAc (3 × 50 ml). The combined organic
phases were washed with 5% aqueous NaHCO3 (3 × 50 ml) and
H2O (3 × 50 ml), dried (Na2SO4), and concentrated in vacuo.
The residue was then purified by silica gel chromatography
(CH2Cl2 –MeOH, 20 : 1), providing the title compound as a
yellow oil (1.77 g, 93%); Rf 0.32 (CH2Cl2 –MeOH, 20 : 1);
1H NMR (CDCl3, 200 MHz) δ 7.32 (s, 5H), 5.54 (d, J = 6.2 Hz,
1H), 5.07 (s, 2H), 4.00–4.04 (m, 1H), 3.65–3.73 (m, 2H),
2.66–2.76 (m, 1H), 2.52 (d, J = 6.2 Hz, 1H), 1.41 (s, 9H).

Solid-Phase Synthesis

BAL-Ile-PEG-PS resin (7) [49]. PEG-PS · HCl resin (2 g,
0.20 mmol/g) was washed with CH2Cl2 (3 × 0.5 min), TFA–
CH2Cl2 (2 : 3, 1 × 1 min, 1 × 20 min), CH2Cl2 (5 × 0.5 min),
DIEA–CH2Cl2 (1 : 19, 4 × 1 min), CH2Cl2 (5 × 0.5 min) and
DMF (5 × 0.5 min). Next, Fmoc-Ile-OH (0.68 g, 5 equiv) and
HOBt · H2O (0.26 g, 5 equiv) were dissolved separately in
CH2Cl2 –DMF (1 : 1, 5 ml total), combined, and added to
the resin. DIPCDI (0.3 ml, 2.0 mmol, 5 equiv) was added
next to the resin, and the reaction was agitated for 12 h.
This was followed by washings with DMF (5 × 0.5 min),
CH2Cl2 (5 × 0.5 min) and DMF (3 × 0.5 min). Fmoc removal
was accomplished by treatment with piperidine–DMF (1 : 4,
3 × 1 min, 3 × 5 min), followed by washing with DMF (10 ×
0.5 min). Solid o,p-PALdehyde (0.45 g, 1.6 mmol, 4 equiv) and
HATU (0.61 g, 4 equiv) were combined and dissolved in DMF
(3 ml); DIEA (0.56 ml, 8 equiv) was added, and, after 1 min
preactivation, this solution was added to the resin. Coupling
proceeded for 2 h, followed by resin washings with DMF
(5 × 0.5 min) and CH2Cl2 (3 × 0.5 min).

Fmoc-Asp-Phe-Val-Ala-H (Table 3, Entry 1). 5a (17 mg,
15 equiv) and NaBH3CN (11 mg, 15 equiv) were dissolved
together in DMF–HOAc (99 : 1, 0.6 ml), and added to BAL-Ile-
PEG-PS resin (7) (50 mg, 0.20 mmol/g). Reaction for 12 h
at 25 °C gave H-(BAL-Ile-PEG-PS)Ala-(OCH2)2, which was
washed consecutively with DMF (5 × 0.5 min), CH2Cl2 (5 ×
0.5 min), DMF (3 × 0.5 min), piperidine–DMF (1 : 4, 3 × 1 min),
DMF (5 × 0.5 min) and CH2Cl2 (3 × 0.5 min). Subsequently,
Fmoc-Val-OH (35 mg, 0.1 mmol, 10 equiv) was dissolved in
CH2Cl2 –DMF (9 : 1, 0.6 ml), DIEA (35 µl, 0.2 mmol, 20 equiv)
was added, the solution was added to the resin, and coupling
initiated by addition of solid HATU (38 mg, 0.1 mmol, 10 equiv)
was carried out for 2 h. The peptide-resin was then washed
with CH2Cl2 (5 × 0.5 min), DMF (5 × 0.5 min) and CH2Cl2
(3 × 0.5 min). The remaining two residues, Fmoc-Phe-OH and
Fmoc-Asp-(OtBu)-OH, were incorporated using standard Fmoc
protocols [Fmoc-AA-OH (5 equiv), DIPCDI (8 µl, 5 equiv)/HOBt
(8 mg, 5 equiv) in DMF] to provide the completed peptide-
resin. An aliquot of resin was cleaved (56% cleavage yield) with
TFA–H2O (19 : 1) at 25 °C for 1 h, and the filtrate was collected,
concentrated and analysed by analytical HPLC (tR 17.4 min,
82% purity); FABMS calcd for C36H40N4O8 656.3, found 657.3
[M + H]+.

Fmoc-Ala-Phe-H (Table 3, Entry 2). Prepared as described
above, but using 5b to reductively aminate BAL-Ile-PEG-PS
resin (7) and Fmoc-Ala-OH to acylate the resulting secondary
amine. An aliquot of resin was cleaved (37% cleavage yield)
with TFA–H2O (19 : 1) at 25 °C for 1 h, and the filtrate was
collected, concentrated and analysed by analytical HPLC (tR
22.4 min, 82% purity). FABMS calcd for C27H26N2O4 442.2,
found 443.1 [M + H]+.

Fmoc-Glu-Val-Val-Phe-H (Table 3, Entry 3). Prepared as
described above, using 5b to reductively aminate BAL-Ile-
PEG-PS resin (7), and peptide elongation with Fmoc-Val-OH
(×2) and Fmoc-Glu(OtBu)-OH. An aliquot of resin was cleaved
(50% cleavage yield) with TFA–H2O (19 : 1) at 25 °C for 1 h,
and the filtrate was collected, concentrated and analysed by
analytical HPLC (tR 18.9 min, 90% purity); FABMS calcd for
C39H46N4O8 698.3, found 699.2 [M + H]+.

Fmoc-Glu-Val-Val-D-Phe-H (Table 3, Entry 4). Prepared as
described above, but using 5c to reductively aminate BAL-
Ile-PEG-PS resin (7). An aliquot of resin was cleaved with
TFA–H2O (19 : 1) at 25 °C for 1 h, and the filtrate was collected,
concentrated and analysed by analytical HPLC (tR 18.6 min,
90% purity); FABMS calcd for C39H46N4O8 698.3, found 699.4
[M + H]+, 697.4 [M − H]−.

Fmoc-Val-Ala-Asp-H (Table 3, Entry 5). Prepared as described
above, but using 5d to reductively aminate BAL-Ile-PEG-PS
resin (7), and peptide elongation with Fmoc-Ala-OH and Fmoc-
Val-OH. An aliquot of resin was cleaved (73% cleavage yield)
with TFA–H2O (19 : 1) at 25 °C for 1 h, and the filtrate was
collected, concentrated and analysed by analytical HPLC (tR
16.3 min, 97% purity); FABMS calcd for C27H31N3O7 509.2,
found 510.1 [M + H]+, 508.1 [M − H]−.

H-Glu-Val-Val-Phe-H. Fmoc-Glu-Val-Val-(BAL-Ile-PEG-PS)
Phe-(OCH2)2 was assembled as already described (experimen-
tal corresponding to Table 3, entry 3), treated with piperi-
dine–DMF (1 : 4, 3 × 1 ml, 3 × 5 ml), and then washed with
DMF (10 × 0.5 min) and CH2Cl2 (3 × 0.5 min). An aliquot of
resin was treated with TFA–H2O (19 : 1, 1 ml) for 1.5 h, and the
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filtrate was collected, concentrated and analysed by analytical
HPLC [tR 13.6 min (87%) and 17.5 min (13%)]; HPLC/ESIMS
calcd for C24H36N4O6 476.3, found 477.1 [M + H]+ (13.3 min
to 13.9 min) and 477.1 [M + H]+ (16.9 min to 17.3 min).

H-Glu-Val-Val-D-Phe-H. Prepared as just described for H-
Glu-Val-Val-Phe-H, but starting from Fmoc-Glu-Val-Val-(BAL-
Ile-PEG-PS)D-Phe-(OCH2)2 (experimental corresponding to
Table 3, entry), HPLC [tR 13.5 min (26%) and 17.0 min (74%)].
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